Compatibility issues between electrodes and electrolytes in solid-state batteries

نویسندگان

  • Yaosen Tian
  • Tan Shi
  • William D. Richards
  • Juchuan Li
  • Jae Chul Kim
  • Gerbrand Ceder
چکیده

Remarkable success has been achieved in the discovery of ceramic alkali superionic conductors as electrolytes in solid-state batteries; however, obtaining a stable interface between these electrolytes and electrodes is difficult. Only limited studies on the compatibility between electrodes and solid electrolytes have been reported, partially because of the need for expensive instrumentation and special cell designs. Without simple yet powerful tools, these compatibility issues cannot be systematically investigated, thus hindering the generalization of design rules for the integration of solid-state battery components. Herein, we present a methodology that combines density functional theory calculations and simple experimental techniques such as X-ray diffraction, simultaneous differential scanning calorimetry and thermal gravimetric analysis, and electrochemistry to efficiently screen the compatibility of numerous electrode/electrolyte pairs. We systemically distinguish between the electrochemical stability of the solid-state conductor, which is relevant wherever the electrolyte contacts an electron pathway, and the electrochemical stability of the electrode/electrolyte interfaces. For the solid electrolyte, we are able to computationally derive an absolute thermodynamic stability voltage window, which is small for Na3PS4 and Na3PSe4, and a larger voltage window which can be kinetically stabilized. The experimental stability, when measured with reliable techniques, falls between these thermodynamic and kinetic limits. Employing a Na solid-state system as an example, we demonstrate the efficiency of our method by finding the most stable system (NaCrO2|Na3PS4|Na–Sn) within a selected chemical space (more than 20 different combinations of electrodes and electrolytes). Important selection criteria for the cathode, electrolyte, and anode in solidstate batteries are also derived from this study. The current method not only provides an essential guide for integrating all-solid-state battery components but can also significantly accelerate the expansion of the electrolyte/electrode compatibility data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes

DOI: 10.1002/aenm.201501590 electrochemical stability window, and (3) chemical compatibility with the anode and cathode. In the past few years, major advances have been achieved in increasing the Li ionic conductivity of the solid electrolytes. The state-of-the-art solid electrolyte materials, such as Li-garnet Li7La3Zr2O12 (LLZO) and Li10GeP2S12 (LGPS) have achieved an ionic conductivity of 10...

متن کامل

Electrochemical Stability of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> and Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Solid Electrolytes

DOI: 10.1002/aenm.201501590 electrochemical stability window, and (3) chemical compatibility with the anode and cathode. In the past few years, major advances have been achieved in increasing the Li ionic conductivity of the solid electrolytes. The state-of-the-art solid electrolyte materials, such as Li-garnet Li 7 La 3 Zr 2 O 12 (LLZO) and Li 10 GeP 2 S 12 (LGPS) have achieved an ionic conduc...

متن کامل

High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.

High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-so...

متن کامل

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safet...

متن کامل

Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies

Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017